Spring 2010 Math 245-2 Exam 3 Solutions

One quarter of students scored 58-68, one quarter scored $68-76$, one quarter scored $76-82$, one quarter scored $83-98$. In particular, the median was 76 , the low was 58 , and the high was 98 .

Problem 1. Carefully define each of the following terms:
a. cardinal number

A cardinal number measures the size of some set.
b. ordinal number

An ordinal number measures sequential position, as compared to 'first'.
c. binary relation

A binary relation on A, B is a subset of $A \times B$.
d. union

The union of two sets is the set containing all the elements in either or both sets.
e. injective

A function is injective if every pair of distinct elements in the domain get mapped to distinct elements of the codomain.

Problem 2. For all sets A, B, C, prove that $A \cap B \cap C \subseteq A \cup C$.
Let $x \in A \cap B \cap C$. Then $(x \in A) \wedge(x \in B) \wedge(x \in C)$, by definition of \cap. Then, by conjunctive simplification, $x \in A$. Then, by disjunctive addition, $(x \in A) \vee(x \in C)$. Then, by definition of $\cup, x \in A \cup C$.

Problem 3. Let $A=\{a, b, c\}, B=\{b, c, d\}$. Find $\mathcal{P}(A) \cap \mathcal{P}(B)$.
The desired intersection is a set that contains as elements all C, such that $(C \subseteq A) \wedge(C \subseteq B)$. Hence, the answer is $\{\emptyset,\{b\},\{c\},\{b, c\}\}$.

Problem 4. For $A=\{a, b\}$, find a relation R on A that is not reflexive and not symmetric.
To make R not reflexive, it must not contain both (a, a) and (b, b). To make R not symmetric, it must contain either (a, b) or (b, a) but not both. Hence, six answers are possible; one example is $R=$ $\{(a, a),(a, b)\}$.

Problem 5. Fix $A=\{1,2,3\}$. We define relation R on A via $x R y$ if and only if $x+3<y^{2}$. Determine, with proof, whether R is a partial order.
We find $R=\{(1,3),(2,3),(3,3)\}$. This is antisymmetric and transitive, but it is not reflexive since $(1,1) \notin R$ (also $(2,2) \notin R$), so R is not a partial order.

Problem 6. Fix $A=\{1,2,3\}$. We define relation R on A via $x R y$ if and only if $x+3<y^{2}$. Determine, with proof, whether R is a function.
Since $R=\{(1,3),(2,3),(3,3)\}$, we have $\mathbf{R}(\mathbf{1})=\mathbf{3}, \mathbf{R}(\mathbf{2})=\mathbf{3}, \mathbf{R}(\mathbf{3})=\mathbf{3}$. Hence R takes exactly one value for each element of the domain, so R is a function.

Problem 7. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be functions, with $g \circ f$ injective. Prove or disprove that f is injective.
SOLUTION 1: Let $a, b \in X$, with $f(a)=f(b)$. But then $g(f(a))=$ $g(f(b))$, so $(g \circ f)(a)=(g \circ f)(b)$. Since $g \circ f$ is injective, $a=b$. Hence f is injective.

SOLUTION 2: Argue by way of contradiction. Suppose f were not injective. Then there would be $a, b \in X$, with $a \neq b$, and $f(a)=f(b)$. But then $g(f(a))=g(f(b))$, so $(g \circ f)(a)=(g \circ f)(b)$. Since $g \circ f$ is injective, this implies $a=b$, which is a contradiction. Hence f is injective.

Problem 8. Prove that any arrangement of five points in a unit square will have some pair of them within 0.75 of each other.
Divide the unit square into a 2×2 grid. By the pigeonhole principle, some 0.5×0.5 square must contain at least two points. The diagonal of this square is $\frac{1}{\sqrt{2}}<0.75$, so this pair is within 0.75 of each other.

Problem 9. Find a finite-state automaton on alphabet $\{a, b\}$ that recognizes all strings with an even number of b 's.

One solution is

Problem 10. Solve the recurrence $a_{n}=a_{n-1}+6 a_{n-2}$, with initial conditions $a_{0}=4, a_{1}=7$.
The characteristic polynomial is $r^{2}=r+6, r^{2}-r-6=0,(r-3)(r+2)=0$. Hence the general solution is $a_{n}=A 3^{n}+B(-2)^{n}$. The initial conditions give $4=a_{0}=A+B$ and $7=a_{1}=3 A-2 B$. We solve these to get $A=3, B=1$. Hence the solution is $a_{n}=3 \cdot 3^{n}+1(-2)^{n}=3^{n+1}+(-2)^{n}$.

